Feature Extraction Notebook#

[ ]:
import pandas as pd
import numpy as np
import interpreTS as it
[2]:
# Creating a time series data
data = pd.DataFrame({
    'id': np.repeat(range(100), 100),
    'time': np.tile(range(100), 100),
    'value1': np.random.normal(0, 1, 10000),
    'value2': np.random.normal(20, 10, 10000)
})
# Creating a feature extractor object
extractor = it.FeatureExtractor(id_column='id', sort_column='time')

# Extracting features from data
features = extractor.extract_features(data)
print("\nFeatures from Original Data:")
display(features)


Features from Original Data:
length_value1 length_value2 mean_value1 mean_value2 variance_value1 variance_value2 stability_value1 stability_value2 entropy_value1 entropy_value2 spikeness_value1 spikeness_value2 seasonality_strength_value1 seasonality_strength_value2
0 100 100 -0.090984 20.984855 0.980715 96.393343 0.945029 0.957836 0.953598 0.936353 -0.171176 0.002747 0.024829 0.000000
1 100 100 -0.041073 19.321699 0.860151 122.939138 0.966346 0.967090 0.965428 0.943508 0.057399 -0.160669 0.000000 0.029677
2 100 100 0.040655 19.561352 1.013766 94.271772 0.959903 0.959041 0.960737 0.971435 0.039584 -0.037157 0.000000 0.000000
3 100 100 0.089580 18.423254 0.919226 105.640273 0.961216 0.961425 0.960473 0.972152 0.162142 -0.209542 0.000000 0.002774
4 100 100 0.043688 20.889307 1.016813 98.086690 0.953565 0.972875 0.976043 0.968271 -0.094232 -0.039167 0.000000 0.014184
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
95 100 100 0.071281 22.267479 0.958148 83.890173 0.941137 0.965725 0.948012 0.917666 -0.313000 -0.285326 0.093162 0.076888
96 100 100 0.180755 18.164891 1.205403 115.013098 0.940937 0.963686 0.965665 0.954352 0.045914 -0.356734 0.000000 0.000000
97 100 100 0.027402 20.088945 1.018580 111.999915 0.948826 0.966604 0.969764 0.979842 -0.325421 -0.167496 0.199431 0.053288
98 100 100 -0.035698 21.318984 0.805854 97.065517 0.959439 0.965456 0.943548 0.956747 -0.008034 -0.280393 0.000000 0.112888
99 100 100 0.174627 21.461813 0.883258 88.348130 0.962152 0.959698 0.966687 0.958974 0.212796 -0.443187 0.038056 0.000000

100 rows × 14 columns

[ ]: