Feature Extraction Notebook#
[ ]:
import pandas as pd
import numpy as np
import interpreTS as it
[2]:
# Creating a time series data
data = pd.DataFrame({
'id': np.repeat(range(100), 100),
'time': np.tile(range(100), 100),
'value1': np.random.normal(0, 1, 10000),
'value2': np.random.normal(20, 10, 10000)
})
# Creating a feature extractor object
extractor = it.FeatureExtractor(id_column='id', sort_column='time')
# Extracting features from data
features = extractor.extract_features(data)
print("\nFeatures from Original Data:")
display(features)
Features from Original Data:
length_value1 | length_value2 | mean_value1 | mean_value2 | variance_value1 | variance_value2 | stability_value1 | stability_value2 | entropy_value1 | entropy_value2 | spikeness_value1 | spikeness_value2 | seasonality_strength_value1 | seasonality_strength_value2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 100 | 100 | -0.090984 | 20.984855 | 0.980715 | 96.393343 | 0.945029 | 0.957836 | 0.953598 | 0.936353 | -0.171176 | 0.002747 | 0.024829 | 0.000000 |
1 | 100 | 100 | -0.041073 | 19.321699 | 0.860151 | 122.939138 | 0.966346 | 0.967090 | 0.965428 | 0.943508 | 0.057399 | -0.160669 | 0.000000 | 0.029677 |
2 | 100 | 100 | 0.040655 | 19.561352 | 1.013766 | 94.271772 | 0.959903 | 0.959041 | 0.960737 | 0.971435 | 0.039584 | -0.037157 | 0.000000 | 0.000000 |
3 | 100 | 100 | 0.089580 | 18.423254 | 0.919226 | 105.640273 | 0.961216 | 0.961425 | 0.960473 | 0.972152 | 0.162142 | -0.209542 | 0.000000 | 0.002774 |
4 | 100 | 100 | 0.043688 | 20.889307 | 1.016813 | 98.086690 | 0.953565 | 0.972875 | 0.976043 | 0.968271 | -0.094232 | -0.039167 | 0.000000 | 0.014184 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
95 | 100 | 100 | 0.071281 | 22.267479 | 0.958148 | 83.890173 | 0.941137 | 0.965725 | 0.948012 | 0.917666 | -0.313000 | -0.285326 | 0.093162 | 0.076888 |
96 | 100 | 100 | 0.180755 | 18.164891 | 1.205403 | 115.013098 | 0.940937 | 0.963686 | 0.965665 | 0.954352 | 0.045914 | -0.356734 | 0.000000 | 0.000000 |
97 | 100 | 100 | 0.027402 | 20.088945 | 1.018580 | 111.999915 | 0.948826 | 0.966604 | 0.969764 | 0.979842 | -0.325421 | -0.167496 | 0.199431 | 0.053288 |
98 | 100 | 100 | -0.035698 | 21.318984 | 0.805854 | 97.065517 | 0.959439 | 0.965456 | 0.943548 | 0.956747 | -0.008034 | -0.280393 | 0.000000 | 0.112888 |
99 | 100 | 100 | 0.174627 | 21.461813 | 0.883258 | 88.348130 | 0.962152 | 0.959698 | 0.966687 | 0.958974 | 0.212796 | -0.443187 | 0.038056 | 0.000000 |
100 rows × 14 columns
[ ]: