Skip to main content
Ctrl+K

InterpreTS 0.5.0 documentation

  • Introduction
  • Feature Extractors
  • Tutorials
  • API Documentation
  • Graphical User Interface (GUI)
  • Introduction
  • Feature Extractors
  • Tutorials
  • API Documentation
  • Graphical User Interface (GUI)

InterpreTS Documentation#

InterpreTS is a Python library designed for time series analysis, feature extraction, and interpretation.

Contents:#

Sections:

  • Introduction
    • Main Features:
    • Supported Use Cases:
  • Feature Extractors
    • FeatureExtractor
  • Available Features
    • Length
    • Mean
    • Peak
    • Spikeness
    • Standard Deviation of the First Derivative (Std_1st_der)
    • Trough
    • Variance
    • Dominant
    • Seasonality Strength
    • Trend Strength
    • Above 9th Decile
    • Distance to the Last Change Point
    • Absolute Energy
    • Below 1st Decile
    • Binarize Mean
    • Crossing Points
    • Entropy
    • Flat Spots
    • Heterogeneity
    • Linearity
    • Missing Points
    • Outliers IQR
    • Outliers STD
    • Significant Changes
    • Stability
    • Variance Change
    • Variability in Sub-Periods
    • Amplitude Change Rate
    • Notes
  • Tutorials
    • Feature Extraction Notebook
    • Feature Extraction Using Dask for Large Time Series Data
    • Streaming Feature Extraction
    • Time-Based Aggregation with window_size and stride
    • Basic Usage
    • Classification Notebook
    • Regression Notebook
    • Dimensionality Reduction and Clustering
    • Association Rules and Sequential Patterns
    • Example of Features Notebook
  • API Documentation
    • Functions
    • Convert to Data Series Functions
    • Data Manager
    • Data Validation
    • Features Loader
    • Task Manager
  • Graphical User Interface (GUI)
    • Getting Started

Quickstart: To install the library, run: .. code-block:: bash

pip install interpreTS

next

Introduction

On this page
  • Contents:

This Page

  • Show Source

© Copyright 2024, Łukasz Wróbel, Sławomir Put, Martyna Żur, Martyna Kramarz, Jarosław Strzelczyk, Weronika Wołowczyk, Piotr Krupiński.

Created using Sphinx 8.1.3.

Built with the PyData Sphinx Theme 0.16.1.