{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Feature Extraction Notebook" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import interpreTS as it" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Features from Original Data:\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
length_value1length_value2mean_value1mean_value2variance_value1variance_value2stability_value1stability_value2entropy_value1entropy_value2spikeness_value1spikeness_value2seasonality_strength_value1seasonality_strength_value2
0100100-0.09098420.9848550.98071596.3933430.9450290.9578360.9535980.936353-0.1711760.0027470.0248290.000000
1100100-0.04107319.3216990.860151122.9391380.9663460.9670900.9654280.9435080.057399-0.1606690.0000000.029677
21001000.04065519.5613521.01376694.2717720.9599030.9590410.9607370.9714350.039584-0.0371570.0000000.000000
31001000.08958018.4232540.919226105.6402730.9612160.9614250.9604730.9721520.162142-0.2095420.0000000.002774
41001000.04368820.8893071.01681398.0866900.9535650.9728750.9760430.968271-0.094232-0.0391670.0000000.014184
.............................................
951001000.07128122.2674790.95814883.8901730.9411370.9657250.9480120.917666-0.313000-0.2853260.0931620.076888
961001000.18075518.1648911.205403115.0130980.9409370.9636860.9656650.9543520.045914-0.3567340.0000000.000000
971001000.02740220.0889451.018580111.9999150.9488260.9666040.9697640.979842-0.325421-0.1674960.1994310.053288
98100100-0.03569821.3189840.80585497.0655170.9594390.9654560.9435480.956747-0.008034-0.2803930.0000000.112888
991001000.17462721.4618130.88325888.3481300.9621520.9596980.9666870.9589740.212796-0.4431870.0380560.000000
\n", "

100 rows × 14 columns

\n", "
" ], "text/plain": [ " length_value1 length_value2 mean_value1 mean_value2 variance_value1 \\\n", "0 100 100 -0.090984 20.984855 0.980715 \n", "1 100 100 -0.041073 19.321699 0.860151 \n", "2 100 100 0.040655 19.561352 1.013766 \n", "3 100 100 0.089580 18.423254 0.919226 \n", "4 100 100 0.043688 20.889307 1.016813 \n", ".. ... ... ... ... ... \n", "95 100 100 0.071281 22.267479 0.958148 \n", "96 100 100 0.180755 18.164891 1.205403 \n", "97 100 100 0.027402 20.088945 1.018580 \n", "98 100 100 -0.035698 21.318984 0.805854 \n", "99 100 100 0.174627 21.461813 0.883258 \n", "\n", " variance_value2 stability_value1 stability_value2 entropy_value1 \\\n", "0 96.393343 0.945029 0.957836 0.953598 \n", "1 122.939138 0.966346 0.967090 0.965428 \n", "2 94.271772 0.959903 0.959041 0.960737 \n", "3 105.640273 0.961216 0.961425 0.960473 \n", "4 98.086690 0.953565 0.972875 0.976043 \n", ".. ... ... ... ... \n", "95 83.890173 0.941137 0.965725 0.948012 \n", "96 115.013098 0.940937 0.963686 0.965665 \n", "97 111.999915 0.948826 0.966604 0.969764 \n", "98 97.065517 0.959439 0.965456 0.943548 \n", "99 88.348130 0.962152 0.959698 0.966687 \n", "\n", " entropy_value2 spikeness_value1 spikeness_value2 \\\n", "0 0.936353 -0.171176 0.002747 \n", "1 0.943508 0.057399 -0.160669 \n", "2 0.971435 0.039584 -0.037157 \n", "3 0.972152 0.162142 -0.209542 \n", "4 0.968271 -0.094232 -0.039167 \n", ".. ... ... ... \n", "95 0.917666 -0.313000 -0.285326 \n", "96 0.954352 0.045914 -0.356734 \n", "97 0.979842 -0.325421 -0.167496 \n", "98 0.956747 -0.008034 -0.280393 \n", "99 0.958974 0.212796 -0.443187 \n", "\n", " seasonality_strength_value1 seasonality_strength_value2 \n", "0 0.024829 0.000000 \n", "1 0.000000 0.029677 \n", "2 0.000000 0.000000 \n", "3 0.000000 0.002774 \n", "4 0.000000 0.014184 \n", ".. ... ... \n", "95 0.093162 0.076888 \n", "96 0.000000 0.000000 \n", "97 0.199431 0.053288 \n", "98 0.000000 0.112888 \n", "99 0.038056 0.000000 \n", "\n", "[100 rows x 14 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Creating a time series data\n", "data = pd.DataFrame({\n", " 'id': np.repeat(range(100), 100),\n", " 'time': np.tile(range(100), 100),\n", " 'value1': np.random.normal(0, 1, 10000),\n", " 'value2': np.random.normal(20, 10, 10000)\n", "})\n", "# Creating a feature extractor object\n", "extractor = it.FeatureExtractor(id_column='id', sort_column='time')\n", "\n", "# Extracting features from data\n", "features = extractor.extract_features(data)\n", "print(\"\\nFeatures from Original Data:\")\n", "display(features)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 2 }