interpreTS.utils package#
Submodules#
interpreTS.utils.data_conversion module#
- interpreTS.utils.data_conversion.convert_to_time_series(data)[source]#
Convert input data to a TimeSeriesData object.
- Parameters:
data (pd.DataFrame, pd.Series, or np.ndarray) – The data to be converted into a TimeSeriesData object.
- Returns:
An instance of TimeSeriesData wrapping the input data.
- Return type:
- Raises:
TypeError – If the input data is not of type pd.DataFrame, pd.Series, or np.ndarray.
ValueError – If the input data is empty or has invalid dimensions.
Examples
>>> import pandas as pd >>> data = pd.Series([1, 2, 3, 4, 5]) >>> ts_data = convert_to_time_series(data)
interpreTS.utils.data_validation module#
- interpreTS.utils.data_validation.validate_time_series_data(data, feature_name=None, validation_requirements=None, **kwargs)[source]#
Validate the input time series data against dynamically provided requirements.
- Parameters:
data (pd.Series, pd.DataFrame, or np.ndarray) – The time series data to be validated.
feature_name (str, optional) – The name of the feature to validate.
validation_requirements (dict, optional) – A dictionary specifying the validation requirements for each feature.
**kwargs (dict) – Additional validation parameters (overrides validation_requirements).
- Returns:
True if the data is valid; raises an error otherwise.
- Return type:
bool
- Raises:
TypeError – If data is not a pd.Series, pd.DataFrame, or np.ndarray.
ValueError – If any validation requirement is not met.