Source code for interpreTS.core.features.feature_missing_points

import pandas as pd
import numpy as np

[docs] def calculate_missing_points(data, percentage=True): """ Calculate the percentage or count of missing (NaN or None) values in a time series. Parameters ---------- data : pd.Series or np.ndarray The time series data for which missing information is to be calculated. percentage : bool, optional If True, returns the percentage of missing values. If False, returns the count of missing values. Default is True. Returns ------- float or int The percentage or count of missing values in the provided time series. Raises ------ TypeError If the data is not a valid time series type. Examples -------- >>> import pandas as pd >>> data = pd.Series([1, 2, np.nan, 4, None]) >>> missing_points(data) 0.4 >>> missing_points(data, percentage=False) 2 """ # Convert to a pandas Series if data is an ndarray if isinstance(data, np.ndarray): data = pd.Series(data) # Calculate total and missing values total_values = len(data) missing_values = data.isna().sum() # Return either percentage or count of missing values if total_values == 0: return np.nan return missing_values / total_values if percentage else missing_values