{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Use rules in textual form" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this tutorial, we will load a set of classification rules in textual form and evaluate them" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Load and prepare dataset" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We begin by loading the titanic dataset into a DataFrame." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | pclass | \n", "age | \n", "sex | \n", "class | \n", "
---|---|---|---|---|
0 | \n", "1st | \n", "adult | \n", "male | \n", "yes | \n", "
1 | \n", "1st | \n", "adult | \n", "male | \n", "yes | \n", "
2 | \n", "1st | \n", "adult | \n", "male | \n", "yes | \n", "
3 | \n", "1st | \n", "adult | \n", "male | \n", "yes | \n", "
4 | \n", "1st | \n", "adult | \n", "male | \n", "yes | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
2196 | \n", "crew | \n", "adult | \n", "female | \n", "yes | \n", "
2197 | \n", "crew | \n", "adult | \n", "female | \n", "yes | \n", "
2198 | \n", "crew | \n", "adult | \n", "female | \n", "no | \n", "
2199 | \n", "crew | \n", "adult | \n", "female | \n", "no | \n", "
2200 | \n", "crew | \n", "adult | \n", "female | \n", "no | \n", "
2201 rows × 4 columns
\n", "\n", " | Rule | \n", "p | \n", "n | \n", "P | \n", "N | \n", "Unique in Positive | \n", "Unique in Negative | \n", "P Unique | \n", "N Unique | \n", "All Unique | \n", "... | \n", "FP | \n", "TN | \n", "FN | \n", "Sensitivity | \n", "Specificity | \n", "Negative Predictive Value | \n", "Odds Ratio | \n", "Relative Risk | \n", "LR+ | \n", "LR- | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "r1 | \n", "1329 | \n", "338 | \n", "1490 | \n", "711 | \n", "118 | \n", "57 | \n", "118 | \n", "57 | \n", "175 | \n", "... | \n", "338 | \n", "373 | \n", "161 | \n", "0.892 | \n", "0.525 | \n", "0.699 | \n", "9.109 | \n", "2.628 | \n", "1.876 | \n", "0.206 | \n", "
1 | \n", "r2 | \n", "1246 | \n", "305 | \n", "1490 | \n", "711 | \n", "35 | \n", "24 | \n", "35 | \n", "24 | \n", "59 | \n", "... | \n", "305 | \n", "406 | \n", "244 | \n", "0.836 | \n", "0.571 | \n", "0.625 | \n", "6.797 | \n", "2.131 | \n", "1.949 | \n", "0.287 | \n", "
2 | \n", "r3 | \n", "344 | \n", "126 | \n", "711 | \n", "1490 | \n", "90 | \n", "106 | \n", "90 | \n", "106 | \n", "196 | \n", "... | \n", "126 | \n", "1364 | \n", "367 | \n", "0.484 | \n", "0.915 | \n", "0.788 | \n", "10.147 | \n", "3.443 | \n", "5.721 | \n", "0.564 | \n", "
3 | \n", "r4 | \n", "1211 | \n", "281 | \n", "1490 | \n", "711 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "281 | \n", "430 | \n", "279 | \n", "0.813 | \n", "0.605 | \n", "0.606 | \n", "6.642 | \n", "2.055 | \n", "2.056 | \n", "0.310 | \n", "
4 | \n", "r5 | \n", "254 | \n", "20 | \n", "711 | \n", "1490 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "20 | \n", "1470 | \n", "457 | \n", "0.357 | \n", "0.987 | \n", "0.763 | \n", "40.847 | \n", "3.900 | \n", "26.615 | \n", "0.652 | \n", "
5 rows × 30 columns
\n", "